WP 2 - Wheat

Progress report for Y2 (1 May 2019 – 30 April 2020)

15 – 16 June 2020 2nd annual online meeting

WP members

- AT Univ Bodenkultur
- CZ Selgen & Crop Research Inst
- DE Secobra
- ES Univ Vigo
- GR Geokomi
- HU Agric Inst Ctr Agric Res Hung Acad Sci
- IT Univ Tuscia
- RO Natl Agric Res Dev Inst
- RS Inst Field Veg Crops
- SI Agric Inst Slovenia & RGA
- SK Natl Agric Food Ctr & Biomila
- UK Univ Newcastle
- US Washington State Univ

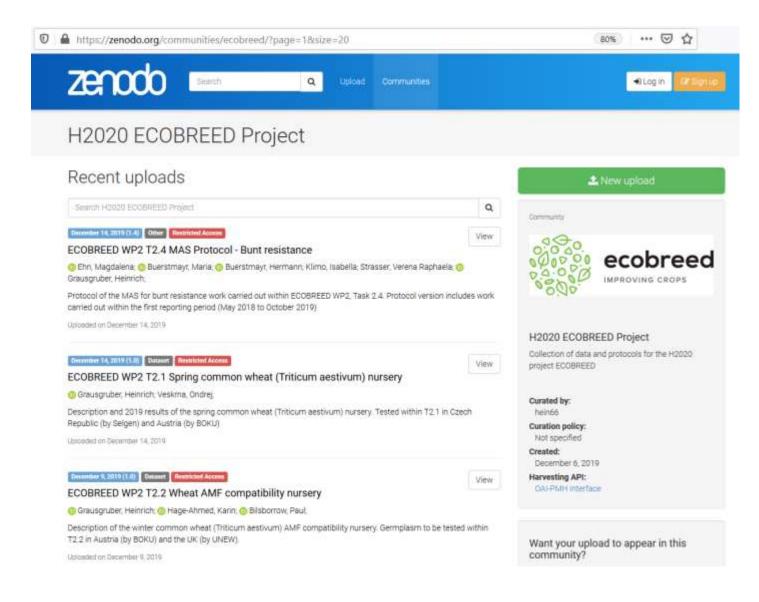
WP2 Online meetings

- T2.1 28 May protocol pending
- T2.2
 29 May
 "

 T2.3
 "
 "

 T2.4
 "
 "
- T2.5 15 & 19 May updated protocol

T2.1 Screening of genetic resources and breeding material


AT – HU – IT
CZ – DE – SK
HU – RO – RS – SI – SK
AT – CZ – DE

ADVPHENO SI – SK – UK

https://zenodo.org/communities/ecobreed/?page=1&size=20

Next update: 1 Sep 2020

Data delivery \rightarrow as soon as possible after harvest, not later than 15 August

Excel (template)

- → Sheet 1: trial metadata (latitude/longitude; sowing/harvest date; management, etc. see D2.1)
- \rightarrow Sheet 2: traits abbreviated according to D2.1 + date (e.g. BBCH1206)
- \rightarrow Sheet 3: field plan

T2.1 Durum wheat

Severe damage due to WDV (wheat dwarf monogeminivirus) in AT trial \rightarrow almost only in ICARDA and Italian germplasm; vector: leafhopper *Psammotettix alienus*; fall and/or spring infection \rightarrow measurements: late sowing (winter crops) and/or early sowing (spring crops)

T2.1 Durum wheat

No disease development during dry spring \rightarrow rapid development of powdery mildew and (Septoria) leaf blotch since mid-May (start of the "rainy season") \rightarrow resistance level of germplasm is (alarmingly) low

T2.1 Spring wheat

No rainfall & high temperatures after sowing (10 March) \rightarrow no tillering, poor crop stand, very short inflorescence

T2.1 Winter wheat

No winter damages \rightarrow well established crop stands

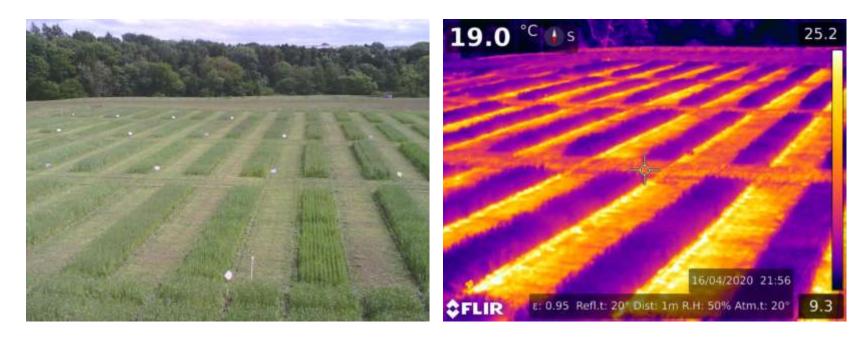

No rainfall in spring \rightarrow irrigation applied at individual sites; low/no disease pressure

Photo credits: Maria Megyeri, MTA-ATK

T2.1 Advanced phenotyping

First (preliminary) trials in SI and UK + additional "projects" at individual partners Subcontracting of indoor trials to Photon Systems Instruments (<u>www.psi.cz</u>) via NPPC \rightarrow selection of genotypes

Photo credits: Ankush Prashar, UNEW

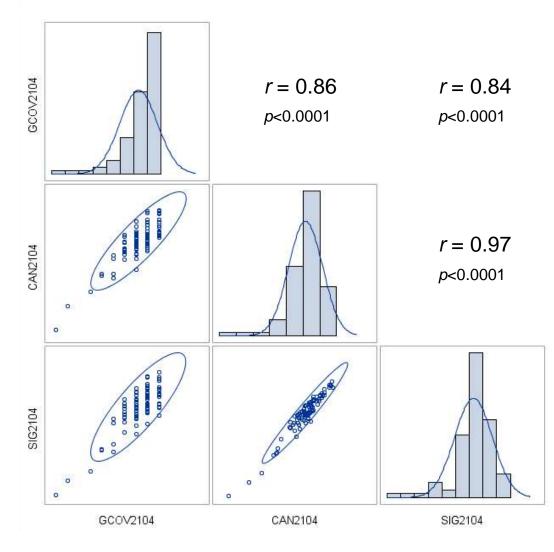
T2.1 Digital image analysis for ground cover

Digital images processed via

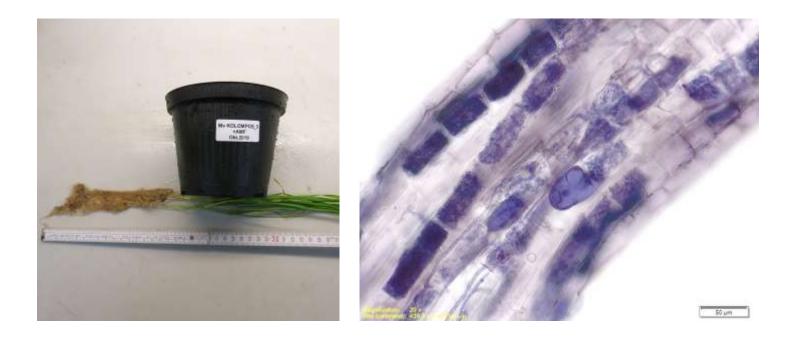
- (i) Canopeo App
- (ii) Sigmascan software
- (iii) Canopeo Matlab script still to do

References:

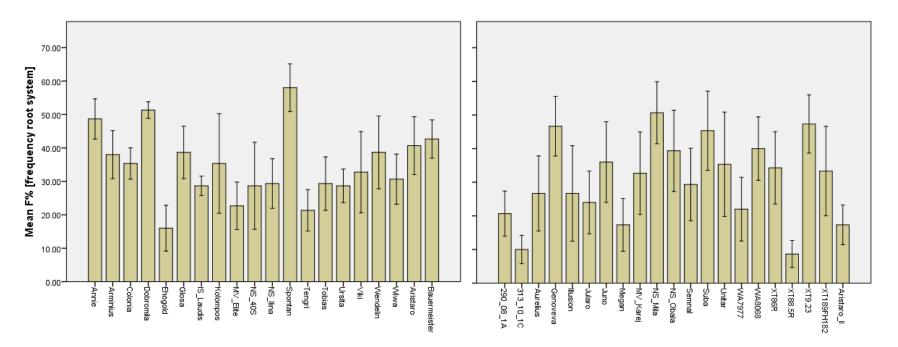
Patrignani A, Ochsner TE (2015) Agron J 107: 2312-2320. https://doi.org/10.2134/agronj15.0150


Richardson MD, Karcher DE, Purcell LC (2001) Crop Sci 41:1884-1888. <u>https://doi.org/10.2135/cropsci2001.1884</u>

GROUND COVER ECOBREED WINTER WHEAT - 21 APRIL 2020

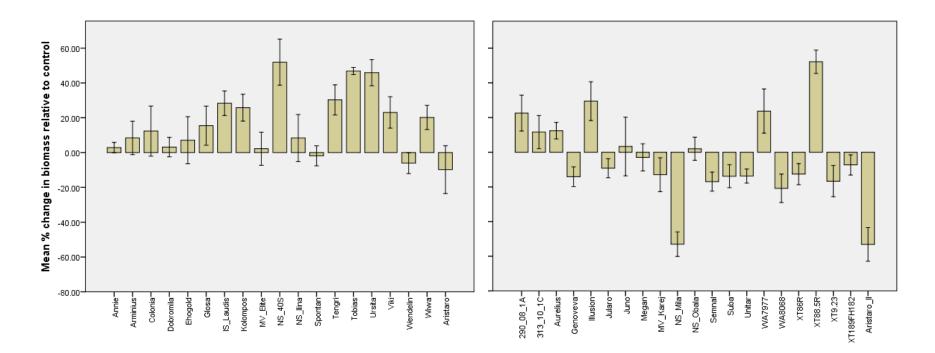


T2.2 AMF-compatibility evaluation



First experiment at UNEW failed, second experiment hampered by COVID-19 restrictions Experiments at BOKU on schedule

Photo credits: Karin Hage-Ahmed, BOKU



- \rightarrow most of the genotypes get colonized by AMF
- \rightarrow only a few genotypes show very little or high colonization rates

 \rightarrow plant biomass is affected in a genotype-dependent manner

Outlook: field screening of AMF colonization

T2.3 Allelopathic activity screening

First results showed genotypic differences in germination and biomass production in the presence of two 'weedy' species (*Lolium rigidum*, *Portulaca oleracea*); \rightarrow chemical analyses also revealed genotypic differences

Photo credits: Adela M. Sánchez-Moreiras, UVIGO

T2.4 Marker assisted selection

Screening for *Lr* & *Sr* resistance genes + wheat-rye chromosome translocations at MTA-ATK (Ildiko Karsai, Marianna Mayer) and NARDI

- \rightarrow MTA-ATK: 32 varieties from EARLY group screened; 5 varieties from LATE group
- \rightarrow NARDI: 20 varieties from EARLY group

 \rightarrow compiled list in preparation; discussion on further steps after harvest

Screening for Gpc-B1 at NARDI (Matilda Ciuca)

- \rightarrow improvement of protocol
- \rightarrow transfer of protocol/knowledge to MTA-ATK

T2.4 Gpc-B1 – Grain protein content

BOKU 2019 WP1 seed multiplication results

	PROT%	GS2.5%	TKWg
Aurelius	12.6	87.6	37.6
Mv Kolompos	13.4	90.9	35.3
Wiwa	13.5	91.4	33.7
Arminius	14.0	94.8	41.2
Tengri	14.1	95.2	40.1
Mv Toborzo	14.4	97.4	29.0
Tobias	14.6	81.7	35.3
Arnold	14.8	92.5	39.2
Aristaro	15.1	85.4	36.6
Kolompos/Glupro	15.5	92.9	44.1
Spontan/Glupro	16.3	89.7	38.2

T2.4 Common bunt QTL

Background:

- seedborne disease → control strategy: seed treatment with fungicides (↑ conventional agriculture)
- Tilletia caries, T. laevis
- yield losses → grain replaced with bunt balls
- quality losses \rightarrow fishy odour of grains
- 5 resistance QTL on 5 chromosomes identified in 3 resistance sources (Blizzard, Bonneville, PI119333) in previous project

Project aim:

- introgression of resistance QTL into elite varieties/lines
- verification of resistance in artificially inoculated field trials
 ecobreed

Grant agreement No 77

- SNP-markers for the detection of resistant alleles in back-cross progenies
- KASP Kompetitive Allele-Specific PCR → fluorescent dyes for allelic discrimination; fast and easy to handle
- Large panel of KASP-markers tested at BOKU → allelic status for several SNPs on each QTL-region available for all lines in the pedigrees of the experimental populations
- Screening of back-cross progeny with minimum 2 polymorphic and flanking SNPmarkers per potentially inherited QTL from the resistance donor
- Selection of lines with ≥2 heterozygous allele calls (F₁-progeny), with ≥2 resistant allele calls (F_{2...n}-progeny)

Population A

 BC_2F_3 -population: 45 crosses, 609 F_1 -progenies screened

108 heterozygous $F_1 s \rightarrow 54$ selected 2165 F_2 -progenies screened with KASP-markers

163 lines homozygous at resistance QTL selected

Outlook: Nov 2020 sowing of lines for

- seed multiplication
- artificial inoculation field trials for resistance testing

MAS

MAS

Population B

 $BC_{3}F_{2}$ -population: 30 crosses, 204 F_{1} -progenies screened

MAS

90 heterozygous $F_1 s \rightarrow 50$ selected

Outlook:

F₂-progenies screening with KASP-markers (Dec 2020)

MAS

Lines homozygous at resistance QTL will be sown in field trials for resistance testing in 2021/22

BC₃F₁-population: 20 crosses, 297 F₁-progenies screened

MAS

73 heterozygous F₁s selected

 $\mathsf{BC}_4\mathsf{F}_1\text{-}\mathsf{population}$: 13 crosses between $\mathsf{BC}_3\mathsf{F}_1\text{-}\mathsf{plants}$ and ECOBREED-varieties

Outlook:

various other resistance genes (from e.g. Aristaro, Deloris, Genius Graziaro, UI SRG) possibly included but not followed by MAS \rightarrow pre-screening in artificial inoculation trials in 2020/21

T2.5 Development of new wheat germplasm for organic farming

Creation of MAGIC populations & CCPs

- some 4-way crosses $(F_1 \times F_1)$ failed during winter \rightarrow repeated on the field
- repetition of crosses by individual partners → inventory of available crosses and seeds after harvest
- re-designing MAGIC scheme → Mv Karej replaced Mv Toborzo; no WSU variety included → new crosses carried out at BOKU in 2020 (e.g. with Skagit 1109)
- 2 CCPs (Brandex, Liocharls) included in LATE, 1 (Mv Elit CCP) in EARLY nursery
- 11 CCPs from RGA tested in SI and HU

Specific ECOBREED crosses

 \rightarrow inventory of available crosses and seeds after harvest

Perennial wheat

•screening of *Thinopyrum intermedium* accessions at RGA → crosses with common wheat
•5 bulks at BOKU originally provided by S. Jones (WSU)

•5 selected bulks at NATURLAND originally provided by S. Jones (WSU)

•Outlook/open questions:

- \rightarrow integration of Kevin Murphy (WSU)
- \rightarrow synergy with Kernza[®]-Austria project (funding decision postponed)

To do

....

. . . .

- clarify involvement of WSU/Kevin Murphy
- delivery of available data until 15 Aug \rightarrow composition of 2021 nurseries
- inventory of successful crosses
- shipment of bulked seed samples from each partner to NPPC for quality analysis
- MAS common bunt: who is screening which crossing progenies? (better) co-operation/exchange with LIVESEED

Nunc est bibendum (Horace)

